/usr/local/perl/lib/site_perl/5.8.5/PDF/API2/Resource/XObject/Image/PNG.pm |
alfred reibenschuh
$Log: PNG.pm,v $ Revision 2.0 2005/11/16 02:18:23 areibens revision workaround for SF cvs import not to screw up CPAN
Revision 1.2 2005/11/16 01:27:50 areibens genesis2
Revision 1.1 2005/11/16 01:19:27 areibens genesis
Revision 1.10 2005/06/17 19:44:04 fredo fixed CPAN modulefile versioning (again)
Revision 1.9 2005/06/17 18:53:35 fredo fixed CPAN modulefile versioning (dislikes cvs)
Revision 1.8 2005/03/14 22:01:31 fredo upd 2005
Revision 1.7 2004/12/16 00:30:55 fredo added no warn for recursion
Revision 1.6 2004/06/15 09:14:54 fredo removed cr+lf
Revision 1.5 2004/06/07 19:44:44 fredo cleaned out cr+lf for lf
Revision 1.4 2004/02/12 14:48:01 fredo removed duplicate definition of $fh
Revision 1.3 2003/12/08 13:06:11 Administrator corrected to proper licencing statement
Revision 1.2 2003/11/30 17:37:16 Administrator merged into default
Revision 1.1.1.1.2.2 2003/11/30 16:57:10 Administrator merged into default
Revision 1.1.1.1.2.1 2003/11/30 16:00:42 Administrator added CVS id/log
=cut
RFC 2083 PNG: Portable Network Graphics January 1997
4.1.3. IDAT Image data
The IDAT chunk contains the actual image data. To create this data:
* Begin with image scanlines represented as described in Image layout (Section 2.3); the layout and total size of this raw data are determined by the fields of IHDR. * Filter the image data according to the filtering method specified by the IHDR chunk. (Note that with filter method 0, the only one currently defined, this implies prepending a filter type byte to each scanline.) * Compress the filtered data using the compression method specified by the IHDR chunk.
The IDAT chunk contains the output datastream of the compression algorithm.
To read the image data, reverse this process.
There can be multiple IDAT chunks; if so, they must appear consecutively with no other intervening chunks. The compressed datastream is then the concatenation of the contents of all the IDAT chunks. The encoder can divide the compressed datastream into IDAT chunks however it wishes. (Multiple IDAT chunks are allowed so that encoders can work in a fixed amount of memory; typically the chunk size will correspond to the encoder's buffer size.) It is important to emphasize that IDAT chunk boundaries have no semantic significance and can occur at any point in the compressed datastream. A PNG file in which each IDAT chunk contains only one data byte is legal, though remarkably wasteful of space. (For that matter, zero-length IDAT chunks are legal, though even more wasteful.)
4.2.9. tRNS Transparency
The tRNS chunk specifies that the image uses simple transparency: either alpha values associated with palette entries (for indexed-color images) or a single transparent color (for grayscale and truecolor images). Although simple transparency is not as elegant as the full alpha channel, it requires less storage space and is sufficient for many common cases.
For color type 3 (indexed color), the tRNS chunk contains a series of one-byte alpha values, corresponding to entries in the PLTE chunk:
Alpha for palette index 0: 1 byte Alpha for palette index 1: 1 byte ... etc ...
Each entry indicates that pixels of the corresponding palette index must be treated as having the specified alpha value. Alpha values have the same interpretation as in an 8-bit full alpha channel: 0 is fully transparent, 255 is fully opaque, regardless of image bit depth. The tRNS chunk must not contain more alpha values than there are palette entries, but tRNS can contain fewer values than there are palette entries. In this case, the alpha value for all remaining palette entries is assumed to be 255. In the common case in which only palette index 0 need be made transparent, only a one-byte tRNS chunk is needed.
For color type 0 (grayscale), the tRNS chunk contains a single gray level value, stored in the format:
Gray: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes are used regardless of the image bit depth.) Pixels of the specified gray level are to be treated as transparent (equivalent to alpha value 0); all other pixels are to be treated as fully opaque (alpha value (2^bitdepth)-1).
For color type 2 (truecolor), the tRNS chunk contains a single RGB color value, stored in the format:
Red: 2 bytes, range 0 .. (2^bitdepth)-1 Green: 2 bytes, range 0 .. (2^bitdepth)-1 Blue: 2 bytes, range 0 .. (2^bitdepth)-1
(For consistency, 2 bytes per sample are used regardless of the image bit depth.) Pixels of the specified color value are to be treated as transparent (equivalent to alpha value 0); all other pixels are to be treated as fully opaque (alpha value 2^bitdepth)-1).
tRNS is prohibited for color types 4 and 6, since a full alpha channel is already present in those cases.
Note: when dealing with 16-bit grayscale or truecolor data, it is important to compare both bytes of the sample values to determine whether a pixel is transparent. Although decoders may drop the low-order byte of the samples for display, this must not occur until after the data has been tested for transparency. For example, if the grayscale level 0x0001 is specified to be transparent, it would be incorrect to compare only the high-order byte and decide that 0x0002 is also transparent.
When present, the tRNS chunk must precede the first IDAT chunk, and must follow the PLTE chunk, if any.
6. Filter Algorithms
This chapter describes the filter algorithms that can be applied before compression. The purpose of these filters is to prepare the image data for optimum compression.
6.1. Filter types
PNG filter method 0 defines five basic filter types:
Type Name
0 None 1 Sub 2 Up 3 Average 4 Paeth
(Note that filter method 0 in IHDR specifies exactly this set of five filter types. If the set of filter types is ever extended, a different filter method number will be assigned to the extended set, so that decoders need not decompress the data to discover that it contains unsupported filter types.)
The encoder can choose which of these filter algorithms to apply on a scanline-by-scanline basis. In the image data sent to the compression step, each scanline is preceded by a filter type byte that specifies the filter algorithm used for that scanline.
Filtering algorithms are applied to bytes, not to pixels, regardless of the bit depth or color type of the image. The filtering algorithms work on the byte sequence formed by a scanline that has been represented as described in Image layout (Section 2.3). If the image includes an alpha channel, the alpha data is filtered in the same way as the image data.
When the image is interlaced, each pass of the interlace pattern is treated as an independent image for filtering purposes. The filters work on the byte sequences formed by the pixels actually transmitted during a pass, and the "previous scanline" is the one previously transmitted in the same pass, not the one adjacent in the complete image. Note that the subimage transmitted in any one pass is always rectangular, but is of smaller width and/or height than the complete image. Filtering is not applied when this subimage is empty.
For all filters, the bytes "to the left of" the first pixel in a scanline must be treated as being zero. For filters that refer to the prior scanline, the entire prior scanline must be treated as being zeroes for the first scanline of an image (or of a pass of an interlaced image).
To reverse the effect of a filter, the decoder must use the decoded values of the prior pixel on the same line, the pixel immediately above the current pixel on the prior line, and the pixel just to the left of the pixel above. This implies that at least one scanline's worth of image data will have to be stored by the decoder at all times. Even though some filter types do not refer to the prior scanline, the decoder will always need to store each scanline as it is decoded, since the next scanline might use a filter that refers to it.
PNG imposes no restriction on which filter types can be applied to an image. However, the filters are not equally effective on all types of data. See Recommendations for Encoders: Filter selection (Section 9.6).
See also Rationale: Filtering (Section 12.9).
6.2. Filter type 0: None
With the None filter, the scanline is transmitted unmodified; it is only necessary to insert a filter type byte before the data.
6.3. Filter type 1: Sub
The Sub filter transmits the difference between each byte and the value of the corresponding byte of the prior pixel.
To compute the Sub filter, apply the following formula to each byte of the scanline:
Sub(x) = Raw(x) - Raw(x-bpp)
where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, and bpp is defined as the number of bytes per complete pixel, rounding up to one. For example, for color type 2 with a bit depth of 16, bpp is equal to 6 (three samples, two bytes per sample); for color type 0 with a bit depth of 2, bpp is equal to 1 (rounding up); for color type 4 with a bit depth of 16, bpp is equal to 4 (two-byte grayscale sample, plus two-byte alpha sample).
Note this computation is done for each byte, regardless of bit depth. In a 16-bit image, each MSB is predicted from the preceding MSB and each LSB from the preceding LSB, because of the way that bpp is defined.
Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Sub values is transmitted as the filtered scanline.
For all x < 0, assume Raw(x) = 0.
To reverse the effect of the Sub filter after decompression, output the following value:
Sub(x) + Raw(x-bpp)
(computed mod 256), where Raw refers to the bytes already decoded.
6.4. Filter type 2: Up
The Up filter is just like the Sub filter except that the pixel immediately above the current pixel, rather than just to its left, is used as the predictor.
To compute the Up filter, apply the following formula to each byte of the scanline:
Up(x) = Raw(x) - Prior(x)
where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, and Prior(x) refers to the unfiltered bytes of the prior scanline.
Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Up values is transmitted as the filtered scanline.
On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x.
To reverse the effect of the Up filter after decompression, output the following value:
Up(x) + Prior(x)
(computed mod 256), where Prior refers to the decoded bytes of the prior scanline.
6.5. Filter type 3: Average
The Average filter uses the average of the two neighboring pixels (left and above) to predict the value of a pixel.
To compute the Average filter, apply the following formula to each byte of the scanline:
Average(x) = Raw(x) - floor((Raw(x-bpp)+Prior(x))/2)
where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered bytes of the prior scanline, and bpp is defined as for the Sub filter.
Note this is done for each byte, regardless of bit depth. The sequence of Average values is transmitted as the filtered scanline.
The subtraction of the predicted value from the raw byte must be done modulo 256, so that both the inputs and outputs fit into bytes. However, the sum Raw(x-bpp)+Prior(x) must be formed without overflow (using at least nine-bit arithmetic). floor() indicates that the result of the division is rounded to the next lower integer if fractional; in other words, it is an integer division or right shift operation.
For all x < 0, assume Raw(x) = 0. On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x.
To reverse the effect of the Average filter after decompression, output the following value:
Average(x) + floor((Raw(x-bpp)+Prior(x))/2)
where the result is computed mod 256, but the prediction is calculated in the same way as for encoding. Raw refers to the bytes already decoded, and Prior refers to the decoded bytes of the prior scanline.
6.6. Filter type 4: Paeth
The Paeth filter computes a simple linear function of the three neighboring pixels (left, above, upper left), then chooses as predictor the neighboring pixel closest to the computed value. This technique is due to Alan W. Paeth [PAETH].
To compute the Paeth filter, apply the following formula to each byte of the scanline:
Paeth(x) = Raw(x) - PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))
where x ranges from zero to the number of bytes representing the scanline minus one, Raw(x) refers to the raw data byte at that byte position in the scanline, Prior(x) refers to the unfiltered bytes of the prior scanline, and bpp is defined as for the Sub filter.
Note this is done for each byte, regardless of bit depth. Unsigned arithmetic modulo 256 is used, so that both the inputs and outputs fit into bytes. The sequence of Paeth values is transmitted as the filtered scanline.
The PaethPredictor function is defined by the following pseudocode:
function PaethPredictor (a, b, c) begin ; a = left, b = above, c = upper left p := a + b - c ; initial estimate pa := abs(p - a) ; distances to a, b, c pb := abs(p - b) pc := abs(p - c) ; return nearest of a,b,c, ; breaking ties in order a,b,c. if pa <= pb AND pa <= pc then return a else if pb <= pc then return b else return c end
The calculations within the PaethPredictor function must be performed exactly, without overflow. Arithmetic modulo 256 is to be used only for the final step of subtracting the function result from the target byte value.
Note that the order in which ties are broken is critical and must not be altered. The tie break order is: pixel to the left, pixel above, pixel to the upper left. (This order differs from that given in Paeth's article.)
For all x < 0, assume Raw(x) = 0 and Prior(x) = 0. On the first scanline of an image (or of a pass of an interlaced image), assume Prior(x) = 0 for all x.
To reverse the effect of the Paeth filter after decompression, output the following value:
Paeth(x) + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))
(computed mod 256), where Raw and Prior refer to bytes already decoded. Exactly the same PaethPredictor function is used by both encoder and decoder.
/usr/local/perl/lib/site_perl/5.8.5/PDF/API2/Resource/XObject/Image/PNG.pm |