version - Perl extension for Version Objects |
version - Perl extension for Version Objects
use version; $version = version->new("12.2.1"); # must be quoted for Perl < 5.8.1 print $version; # v12.2.1 print $version->numify; # 12.002001 if ( $version gt "12.2" ) # true
$alphaver = version->new("1.02_03"); # must be quoted! print $alphaver; # 1.02_0300 print $alphaver->is_alpha(); # true $ver = qv("1.2.0"); # v1.2.0
$perlver = version->new(5.005_03); # must not be quoted! print $perlver; # 5.005030
Overloaded version objects for all modern versions of Perl. This module implements all of the features of version objects which will be part of Perl 5.10.0.
If you intend for your module to be used by different releases of Perl, and/or for your $VERSION scalar to mean what you think it means, there are a few simple rules to follow:
If you intend to use Extended Versions, you are strongly encouraged to use the qv() operator with a quoted term, e.g.:
use version; our $VERSION = qv("1.2.3");
on a single line as above.
At the very least, decide on which of the several ways to initialize your version objects you prefer and stick with it. It is also best to be explicit about what value you intend to assign your version object and to not rely on hidden behavior of the parser.
my $builder = Module::Build->new( ... requires => { ... , 'version' => 0.50, ..., }, ... );
and it should Just Work(TM). Module::Build will [hopefully soon] include full support for version objects; there are no current plans to patch ExtUtils::MakeMaker to support version objects.
As much as possible, the version.pm module remains compatible with all
current code. However, if your module is using a module that has defined
$VERSION
using the version class, there are a couple of things to be
aware of. For purposes of discussion, we will assume that we have the
following module installed:
package Example; use version; $VERSION = qv('1.2.2'); ...module code here... 1;
use Example 1.002003;
will always work correctly. The use
will perform an automatic
$VERSION
comparison using the floating point number given as the first
term after the module name (e.g. above 1.002.003). In this case, the
installed module is too old for the requested line, so you would see an
error like:
Example version 1.002003 (v1.2.3) required--this is only version 1.002002 (v1.2.2)...
use Example 1.2.3;
and it will again work (i.e. give the error message as above), even with
releases of Perl which do not normally support v-strings (see What about v-strings below). This has to do with that fact that use
only checks
to see if the second term looks like a number and passes that to the
replacement the UNIVERSAL::VERSION manpage. This is not true in Perl 5.005_04,
however, so you are strongly encouraged to always use a numeric version
in your code, even for those versions of Perl which support the extended
version.
For the purposes of this module, a version ``number'' is a sequence of positive integer values separated by one or more decimal points and optionally a single underscore. This corresponds to what Perl itself uses for a version, as well as extending the ``version as number'' that is discussed in the various editions of the Camel book.
There are actually two distinct kinds of version objects:
Both of these methods will produce similar version objects, in that the default stringification will yield the version Normal Form only if required:
$v = version->new(1.002); # 1.002, but compares like 1.2.0 $v = version->new(1.002003); # 1.002003 $v2 = version->new("1.2.3"); # v1.2.3
In specific, version numbers initialized as Numeric Versions will
stringify as they were originally created (i.e. the same string that was
passed to new()
. Version numbers initialized as Extended Versions
will be stringified as Normal Form.
These correspond to historical versions of Perl itself prior to 5.6.0, as well as all other modules which follow the Camel rules for the $VERSION scalar. A numeric version is initialized with what looks like a floating point number. Leading zeros are significant and trailing zeros are implied so that a minimum of three places is maintained between subversions. What this means is that any subversion (digits to the right of the decimal place) that contains less than three digits will have trailing zeros added to make up the difference, but only for purposes of comparison with other version objects. For example:
# Prints Equivalent to $v = version->new( 1.2); # 1.2 v1.200.0 $v = version->new( 1.02); # 1.02 v1.20.0 $v = version->new( 1.002); # 1.002 v1.2.0 $v = version->new( 1.0023); # 1.0023 v1.2.300 $v = version->new( 1.00203); # 1.00203 v1.2.30 $v = version->new( 1.002003); # 1.002003 v1.2.3
All of the preceding examples are true whether or not the input value is quoted. The important feature is that the input value contains only a single decimal. See also Alpha Versions for how to handle
IMPORTANT NOTE: As shown above, if your numeric version contains more than 3 significant digits after the decimal place, it will be split on each multiple of 3, so 1.0003 is equivalent to v1.0.300, due to the need to remain compatible with Perl's own 5.005_03 == 5.5.30 interpretation. Any trailing zeros are ignored for mathematical comparison purposes.
These are the newest form of versions, and correspond to Perl's own version style beginning with 5.6.0. Starting with Perl 5.10.0, and most likely Perl 6, this is likely to be the preferred form. This method normally requires that the input parameter be quoted, although Perl's after 5.8.1 can use v-strings as a special form of quoting, but this is highly discouraged.
Unlike Numeric Versions, Extended Versions have more than a single decimal point, e.g.:
# Prints $v = version->new( "v1.200"); # v1.200.0 $v = version->new("v1.20.0"); # v1.20.0 $v = qv("v1.2.3"); # v1.2.3 $v = qv("1.2.3"); # v1.2.3 $v = qv("1.20"); # v1.20.0
In general, Extended Versions permit the greatest amount of freedom to specify a version, whereas Numeric Versions enforce a certain uniformity. See also New Operator for an additional method of initializing version objects.
Just like Numeric Versions, Extended Versions can be used as Alpha Versions.
The one time that a numeric version must be quoted is when a alpha form is used with an otherwise numeric version (i.e. a single decimal point). This is commonly used for CPAN releases, where CPAN or CPANPLUS will ignore alpha versions for automatic updating purposes. Since some developers have used only two significant decimal places for their non-alpha releases, the version object will automatically take that into account if the initializer is quoted. For example Module::Example was released to CPAN with the following sequence of $VERSION's:
# $VERSION Stringified 0.01 0.01 0.02 0.02 0.02_01 0.02_01 0.02_02 0.02_02 0.03 0.03 etc.
The stringified form of numeric versions will always be the same string that was used to initialize the version object.
Overloading has been used with version objects to provide a natural interface for their use. All mathematical operations are forbidden, since they don't make any sense for base version objects. Consequently, there is no overloaded numification available. If you want to use a version object in a numeric context for some reason, see the numify object method.
new()
operator is used to initialize
version objects. One way to increment versions when programming is to
use the CVS variable $Revision, which is automatically incremented by
CVS every time the file is committed to the repository.
In order to facilitate this feature, the following code can be employed:
$VERSION = version->new(qw$Revision: 2.7 $);
and the version object will be created as if the following code were used:
$VERSION = version->new("v2.7");
In other words, the version will be automatically parsed out of the string, and it will be quoted to preserve the meaning CVS normally carries for versions. The CVS $Revision$ increments differently from numeric versions (i.e. 1.10 follows 1.9), so it must be handled as if it were a Extended Version.
A new version object can be created as a copy of an existing version object, either as a class method:
$v1 = version->new(12.3); $v2 = version->new($v1);
or as an object method:
$v1 = version->new(12.3); $v2 = $v1->new(12.3);
and in each case, $v1 and $v2 will be identical. NOTE: if you create a new object using an existing object like this:
$v2 = $v1->new();
the new object will not be a clone of the existing object. In the example case, $v2 will be an empty object of the same type as $v1.
qv()
qv()
sub. This is not strictly like other q? operators (like qq, qw),
in that the only delimiters supported are parentheses (or spaces). It is
the best way to initialize a short version without triggering the floating
point interpretation. For example:
$v1 = qv(1.2); # 1.2.0 $v2 = qv("1.2"); # also 1.2.0
As you can see, either a bare number or a quoted string can usually
be used interchangably, except in the case of a trailing zero, which
must be quoted to be converted properly. For this reason, it is strongly
recommended that all initializers to qv()
be quoted strings instead of
bare numbers.
To prevent the qv()
function from being exported to the caller's namespace,
either use version with a null parameter:
use version ();
or just require version, like this:
require version;
Both methods will prevent the import()
method from firing and exporting the
qv()
sub. This is true of subclasses of version as well, see
SUBCLASSING for details.
For the subsequent examples, the following three objects will be used:
$ver = version->new("1.2.3.4"); # see "Quoting" below $alpha = version->new("1.2.3_4"); # see "Alpha versions" below $nver = version->new(1.002); # see "Numeric Versions" above
print $ver->normal; # prints as v1.2.3.4 print $ver->stringify; # ditto print $ver; # ditto print $nver->normal; # prints as v1.2.0 print $nver->stringify; # prints as 1.002, see "Stringification"
In order to preserve the meaning of the processed version, the normalized representation will always contain at least three sub terms. In other words, the following is guaranteed to always be true:
my $newver = version->new($ver->stringify); if ($newver eq $ver ) # always true {...}
print $ver->numify; # prints 1.002003004 print $nver->numify; # prints 1.002
Unlike the stringification operator, there is never any need to append trailing zeros to preserve the correct version value.
new()
or qv()
,
with one exception. The sole exception is if the object was created using
qv()
and the initializer did not have two decimal places or a leading
'v' (both optional), then the stringified form will have a leading 'v'
prepended, in order to support round-trip processing.
For example:
Initialized as Stringifies to ============== ============== version->new("1.2") 1.2 version->new("v1.2") v1.2 qv("1.2.3") 1.2.3 qv("v1.3.5") v1.3.5 qv("1.2") v1.2 ### exceptional case
See also the UNIVERSAL::VERSION manpage, as this also returns the stringified form when used as a class method.
cmp
and <=>
operators perform the same comparison between
terms (upgrading to a version object automatically). Perl automatically
generates all of the other comparison operators based on those two.
In addition to the obvious equalities listed below, appending a single
trailing 0 term does not change the value of a version for comparison
purposes. In other words ``v1.2'' and ``1.2.0'' will compare as identical.
For example, the following relations hold:
As Number As String Truth Value ------------- ---------------- ----------- $ver > 1.0 $ver gt "1.0" true $ver < 2.5 $ver lt true $ver != 1.3 $ver ne "1.3" true $ver == 1.2 $ver eq "1.2" false $ver == 1.2.3.4 $ver eq "1.2.3.4" see discussion below
It is probably best to chose either the numeric notation or the string notation and stick with it, to reduce confusion. Perl6 version objects may only support numeric comparisons. See also Quoting.
WARNING: Comparing version with unequal numbers of decimal points (whether explicitly or implicitly initialized), may yield unexpected results at first glance. For example, the following inequalities hold:
version->new(0.96) > version->new(0.95); # 0.960.0 > 0.950.0 version->new("0.96.1") < version->new(0.95); # 0.096.1 < 0.950.0
For this reason, it is best to use either exclusively Numeric Versions or Extended Versions with multiple decimal points.
$vobj = version->new($something); if ( $vobj ) # true only if $something was non-blank
You can also test whether a version object is an Alpha version, for example to prevent the use of some feature not present in the main release:
$vobj = version->new("1.2_3"); # MUST QUOTE ...later... if ( $vobj->is_alpha ) # True
Because of the nature of the Perl parsing and tokenizing routines,
certain initialization values must be quoted in order to correctly
parse as the intended version, especially when using the qv() operator.
In all cases, a floating point number passed to version->new()
will be
identically converted whether or not the value itself is quoted. This is
not true for qv(), however, when trailing zeros would be stripped on
an unquoted input, which would result in a very different version object.
In addition, in order to be compatible with earlier Perl version styles, any use of versions of the form 5.006001 will be translated as v5.6.1. In other words, a version with a single decimal point will be parsed as implicitly having three digits between subversions, but only for internal comparison purposes.
The complicating factor is that in bare numbers (i.e. unquoted), the underscore is a legal numeric character and is automatically stripped by the Perl tokenizer before the version code is called. However, if a number containing one or more decimals and an underscore is quoted, i.e. not bare, that is considered a Alpha Version and the underscore is significant.
If you use a mathematic formula that resolves to a floating point number, you are dependent on Perl's conversion routines to yield the version you expect. You are pretty safe by dividing by a power of 10, for example, but other operations are not likely to be what you intend. For example:
$VERSION = version->new((qw$Revision: 1.4)[1]/10); print $VERSION; # yields 0.14 $V2 = version->new(100/9); # Integer overflow in decimal number print $V2; # yields something like 11.111.111.100
Perl 5.8.1 and beyond will be able to automatically quote v-strings but that is not possible in earlier versions of Perl. In other words:
$version = version->new("v2.5.4"); # legal in all versions of Perl $newvers = version->new(v2.5.4); # legal only in Perl >= 5.8.1
Beginning with Perl 5.6.0, an alternate method to code arbitrary strings of bytes was introduced, called v-strings. They were intended to be an easy way to enter, for example, Unicode strings (which contain two bytes per character). Some programs have used them to encode printer control characters (e.g. CRLF). They were also intended to be used for $VERSION, but their use as such has been problematic from the start.
There are two ways to enter v-strings: a bare number with two or more decimal points, or a bare number with one or more decimal points and a leading 'v' character (also bare). For example:
$vs1 = 1.2.3; # encoded as \1\2\3 $vs2 = v1.2; # encoded as \1\2
However, the use of bare v-strings to initialize version objects is strongly discouraged in all circumstances (especially the leading 'v' style), since the meaning will change depending on which Perl you are running. It is better to directly use Extended Versions to ensure the proper interpretation.
If you insist on using bare v-strings with Perl > 5.6.0, be aware of the following limitations:
1) For Perl releases 5.6.0 through 5.8.0, the v-string code merely guesses, based on some characteristics of v-strings. You must use a three part version, e.g. 1.2.3 or v1.2.3 in order for this heuristic to be successful.
2) For Perl releases 5.8.1 and later, v-strings have changed in the Perl core to be magical, which means that the version.pm code can automatically determine whether the v-string encoding was used.
3) In all cases, a version created using v-strings will have a stringified form that has a leading 'v' character, for the simple reason that sometimes it is impossible to tell whether one was present initially.
There are two types of Version Objects:
$VERSION = version->new(qw$Revision: 2.7 $);
and the current RCS Revision for that file will be inserted automatically. If the file has been moved to a branch, the Revision will have three or more elements; otherwise, it will have only two. This allows you to automatically increment your module version by using the Revision number from the primary file in a distribution, see VERSION_FROM in the ExtUtils::MakeMaker manpage.
$alphaver = version->new("12.03_01"); # must be quoted
obeys the relationship
12.03 < $alphaver < 12.04
Alpha versions with a single decimal point will be treated exactly as if they were Numeric Versions, for parsing and output purposes. The underscore will be output when an alpha version is stringified, in the same place as it was when input.
Alpha versions with more than a single decimal point will be treated exactly as if they were Extended Versions, and will display without any trailing (or leading) zeros, in the Version Normal form. For example,
$newver = version->new("12.3.1_1"); print $newver; # v12.3.1_1
In addition to the version objects, this modules also replaces the core UNIVERSAL::VERSION function with one that uses version objects for its comparisons. The return from this operator is always the stringified form, but the warning message generated includes either the stringified form or the normal form, depending on how it was called.
For example:
package Foo; $VERSION = 1.2;
package Bar; $VERSION = "1.3.5"; # works with all Perl's (since it is quoted)
package main; use version;
print $Foo::VERSION; # prints 1.2
print $Bar::VERSION; # prints 1.003005
eval "use foo 10"; print $@; # prints "foo version 10 required..." eval "use foo 1.3.5; # work in Perl 5.6.1 or better print $@; # prints "foo version 1.3.5 required..."
eval "use bar 1.3.6"; print $@; # prints "bar version 1.3.6 required..." eval "use bar 1.004"; # note numeric version print $@; # prints "bar version 1.004 required..."
IMPORTANT NOTE: This may mean that code which searches for a specific
string (to determine whether a given module is available) may need to be
changed. It is always better to use the built-in comparison implicit in
use
or require
, rather than manually poking at class-
VERSION>
and then doing a comparison yourself.
The replacement UNIVERSAL::VERSION, when used as a function, like this:
print $module->VERSION;
will also exclusively return the stringified form. See Stringification for more details.
This module is specifically designed and tested to be easily subclassed.
In practice, you only need to override the methods you want to change, but
you have to take some care when overriding new()
(since that is where all
of the parsing takes place). For example, this is a perfect acceptable
derived class:
package myversion; use base version; sub new { my($self,$n)=@_; my $obj; # perform any special input handling here $obj = $self->SUPER::new($n); # and/or add additional hash elements here return $obj; }
See also the version::AlphaBeta manpage on CPAN for an alternate representation of version strings.
NOTE: Although the qv operator is not a true class method, but rather a
function exported into the caller's namespace, a subclass of version will
inherit an import()
function which will perform the correct magic on behalf
of the subclass.
qv - Extended Version initialization operator
John Peacock <jpeacock@cpan.org>
version - Perl extension for Version Objects |